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Short Papers .—

Hysteresis Effects in Microwave Amplifiers and Phase-
Locked Oscillators Caused by Amplitude-

Dependent Susceptance

BERTIL HANSSON

Abstracf-A possible explanation for a type of experimentally

observed amplitude instability for amplifiers and locked oscillators

is given. The results obtained are in good agreement qualitatively

with measurements on IMPATT-diode amplifiers. The theory shows

that the susceptsnce of the active element has to be amplitude de-
pendent to create the actual type of instability.

I. INTRODUCTION

Stability criteria for a phase-locked negative-conductance oscil-

lator are derived in [1]. The criteria are derived in terms of the

total admittance, which is the sum of the admittance of the negative-

conductance element and the circuit admittance as seen from this

element. The circuit admittance is independent of amplitude. For
the amplitude dependence of the admittance of the active element a
series expansion was used, This type of expansion had been used

earlier by Hines [2]. The stability of phase-locked oscillators also

has been examined using describing-function techniques with almost
identical results [3], [4].

The stability criteria are also valid for a negative-conductance

amplifier and they will be used here to describe a type of instability
often found experimentally. Fig. 1 shows some curves of output

power versus frequency fOr an IMPATT-diode amplifier. Similar curves

have also been observed by others [.5], [6]. The main feature of the

curves is that the frequency at which maximum gain occurs moves

towards lower frequencies when the input power increases. This

effect indicates that the susceptance of the active element increases

with increasing RF-amplitude. In some cases, jump and hysteresis

effects occur in the .PO.t versus frequency curves. This instability is
explained theoretically in the following sections. The hysteresis
shows that for some input powers and frequencies we have two stable
states with different output powers from the amplifier and different
RF voltages across the active element.

II. STABILITY EQUATIONS

We consider a circulator-coupled negative-conductance device

with a general coupling circuit. The circuit may be viewed as an

active element paralleled with a passive circuit admittance, into

which a current related to the input power is injected (see Fig. 1 in
[1 ]). The derivation of the stability criteria and an explanation of the

boundary and locus curves for such a circuit are also given in [1]. The

locus curve is a closed curve in a diagram of voltage versus frequency

within which all points are unstable. In the same diagram all points
below the boundary curve are unstable. This is shown in Fig. 2 where
shaded areas correspond to unstable points.

For an amplifier the equation for the boundary curve has no real

solutions so the only curve we have to consider is the locus curve.
Equation (20) in [1] is the equation for the locus curve

G.(G + dG/dV. V) + B.(B + dB/dV. V) = O (1)

where G is the total conductance and B the total susceptance of the

circuit. G and B are, in general, functions of both RF voltage ampli-
tude V and frequency.

For the amplitude dependence, which is only in the active ele-

ment, a series expansion is used. The current in the element can be

written in a series form

i = (Ilvd + (hvdz + %vda + . . . .

We assume that the voltage t’~ is a purely sinusoidal voltage at fre-
quency u.

Manuscript received January 29, 1973; revised June 11, 1973.
The author is with the Research Laboratory of Electronics, Chalmers University

of Technology, Gothenburg, Sweden.

Fig. 1. Experimental output power curves for an lMFATT-diOde reflection
amplifier with small sknsl gain 21 dB.

Fig, 2. Voltage amplitude versus frequency with the injected power ‘asa parameter.
Po is maximum generated power and VO the corresponding voltage. A simple
parallel resonant circuit with Q =10 is used. Go/G. =2.0 and Bz/G =0.5.

Vd = V COS d.

The fundamental component of the current 1 is given by [2]

~=aIV+ta8V3 +~a5V6 +’””.

For the admittance of the active element we get the following series

expansion where only the first two terms are taken into account:

Y,f = Go+ G,. V’ +j(Bo + B2” V’). (2)

The passive coupling circuit as seen from the active element is cle-

scribed by Y.= G.+j. B.. With Go! =Go+GC and Boi =Bo+B, the total

admittance is

Y = G-1-j. B = Got-1- Gz” V’+@O?+ Bz” V’) (3)

where the coefficients now are only frequency dependent. Introduc-

ing this in the equation for the locus curve we obtain

(G,, -I- G2c V’)(GO, -1- 3°Gzo V’) + (Bo~ + Bzo J”)

.(5, + 3. B2. V2) = O (4a)

or

(G,,z + B,,’) +4. (Go, G, + B0,.B2)v2 + 3. (G22 + B22) “ V’ = 0. (4b)

We now introduce BoJGo, = a and B.JG, =b and get

(1 + az) +4.(1 +a.fr)”GO, ”G2” Vz+ 3“(1 + b2)”G2”V4 = 0. (’kc)



740 IEEE TRANsACTIONS ON MICROWAVE THEORY AND TECHNIQUES, NOVEMBER 1973

b,

Fig. 3. Stability diagram. The shaded areas areinstability regions for f%. Co~>O
and G. Got<O. The border line between shaded and unshaded regions corre-
sponds to the endpoints of the locus curve. Asymptotes are a, b=y &

The conditions for real solutions to (4) are

(1 +a.b).G,,.Gz <O (5a)

and

a’2&’ – S(aa+bz) + 8.a. b + 1>0. (5b)

The coefficient: a, b, Got, and GZ are frequency dependent, and we have

real solutions to (4) and a locus curve only in a certain frequency

range. For example, this frequency range for the oscillator in Fig. 2
is f /f ~= 0.952-1.028. From (5) we can see that only parameters that

influence the existence of a locus curve are a, b, and the sign of GOL.Gz.
Fig. 3 is a diagram with a and bon the axis. If a and b are within the
shaded areas and the sign of Gz. GoI is that indicated we have a locus
curve and a possibility for the type of instability which is connected
with the locus curve. For GOC.G2 <0 we have one shaded area and
for GOI. GZ>0 two different areas.

III. FREQUENCY RANGE OF THE Locus CURVE

For an amplifier Go!> O is a necessary condition for small signal

stability. GZ is positive because the negative conductance is decreas-

ing with voltage amplitude. Thus for an amplifier the sign of Go~. GZ is

positive. For an IMPATT diode relatively close to the avalanche fre-
quency Bz >0. A simple single tuned circuit has dB/oh = 2. C> O.

With a high Q circuit the parameters of the active element can be

assumed to be constant with frequency and the only frequency
dependence to take into account is that of B.. The point correspond-
ing to the center frequency of the amplifier in Fig. 3 is on the axis
a = O(BW = O). When we increase the frequency we move to the right
in the diagram along a horizontal line b = Bz./Gz = constant. Because

b is positive with the assumptions given above we move into the
shaded area if we decrease the frequency, but only if b > @.

We can also use the same stability diagram for a phase-locked
oscillator. For the oscillator the coefficient Go~ is negative. The free-
running oscillation point is on the symmetry axis a = b in Fig. 3. The

area close to this axis is shaded for Go~. GZ <0 so we have a locus curve

extending around the free-running frequency. If we assume small
frequency dependence for the parameters of the active element,

the only difference is that we move to the left in the diagram with
increasing frequency because Got is negative. If Bi >0 the locus
curve extends more towards lower frequencies. If Bz/Gz > ~ the
locus curve will have infinite extension at the low frequency side.

IV. AMPLITUDE RANGE OF Locus CURVE

This far we have only considered at which frequencies we have a
locus curve. We now want to know something about the amplitude
range and therefore determine the amplitudes at the endpoints of

the locus curve (as a function of frequency). They are obtained by

taking the derivative of (4) with respect to voltage and setting the
derivative equal to zero.

4.(G’ot.Gz + Bot.B2) + 6.(Bz2 + G22)V2 = O (6)

which gives

2 GOt. G2+Bot. B2 2 Go, l+a. b
v2 =__

3 G29+B29 ‘-i TsTTF”
(7)

~

F1g.4. The factor (l+a$)/(l+b2) attheborder line (in Fig.3) asafunctionof b.

This value can also reobtained as a double root to (4), Maximum

generated power intheactive element occurs when [2]

V2= VOP$2= - Go/(2 . G,).

For an amplifier the small signal gain is

F = (G, – Go)/(G, + Go) = (Got – 2@/Go~

where GO is the small signal conductance of the active element and

G. is the coupling-circuit conductance.
For the amplifier we get

8/3 1 +a. b
v2/vopt2= – ~ ~+ b2 (8)

where (1 +ab) /(1 +bz) is always negative. The variation of this factor
at the endpoint of the locus curve is shown in Fig. 4. We can see that

the locus curve moves towards smaller amplitudes with increasing

value of b = Bz/Gz and also with increasing gain F.
Turning to the oscillator again we find that the amplitude of the

free-running oscillator is VOZ = – GoJGz(GoL k negative). The ampli-

tude at the endpoints of the locus curve is

21+ab
v2/vo2 . _ _

31+b2

where (1 +ab) / (1 +bz) is positive for the oscillator. The amplitude at

the endpoints of the locus curve is changing in much the same way
as the amplitude of the free-running oscillator. The variation of
the factor (1 +ab) /(1 +bz) k shown in Fig. 4. Notice that this factor
is independents of the sign of b.

V. THE INSTABILITY CONNECTED WITH THE Locus CURVE

Conditions for the existence of a locus curve have only been

discussed so far. The type of instability connected with the locus curve
should now be examined. Therefore, we look at the output power

curves for an amplifier. The equations for calculating input power,
diode voltage, output power, and phase have been given earlier. (See
for example [1], [2 ].) Output power versus frequency with input
power as a parameter is shown in Fig. 5. The curves have been com-
puted for three different values of small signal gain. The shaded
areas are the areas within the locus curves which correspond to un-
stable points. The output power curves are shown with hysteresis
at the locus curve. If we have an amplifier as in Fig. 5(b) and de-
crease the frequency with P ~n= 0.1. PO, the output power will sud-

denly drop when we come to the locus curve. If we then increase the

frequency we will stay at the low power part until we come to the locus
curve again. As is pointed out in [4], the derivative dPJdw (and

also d V/&o) approaches infinity at the locus curve. The solution to
the circuit equations for Pi. = 0.1. PO is a S-type curve in frequency.
The part of the curve within the locus curve is not shown here, but

we can see what it looks like for the oscillator in Fig. 2 where the

whole curve is drawn. For the amplifier we then have either one
stable point or, when the output power curve crosses the locus curve,

two stable points and one unstable.
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Fig. 6. Output power versus frequency for an oscillator.
G,/G. = -2.0 aud Ba/r% =0.5.

only one of these states instable. One is unstable because it is within

the locus curve and one is unstable because it is below the boundary

curve. Between f/fO=O.952 and f/jo=O.973 we can have two stable

states if one of the points is between the locus and boundary curves in

the voltage diagram. This occurs for Pin somewhat larger than 0.1. Po.
Output power curves for the same oscillator are shown in Fig. 6.
Here only the stable parts of the curves are drawn. These parts which

.

‘“”L‘Kr-’-x m the voltage diagram are all above the locus curve are now partly

within the locus curve. This is because the active element is oDti-
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Fig. 5. ,Output power ~ersusfrequency with theinput power asapammeterforan
amphlier. PII 1s maximum genersted power. Bz/Gz =5, Q=1O. (a) Small signsl
gain 10 dB, GO/Gc=-0.519. (b) Small signsd gain 20 dB, GO/GC=–0.818. (c)
Small signal gain 30 dB, GO/Gc= -0.939.

Fig. 5 shows that the locus curve and the connected hysteresis

and jump effects move towards the center frequency and towards
smaller amplitudes for increasing gain. This can also be concluded

from the preceding calculations. Equation (8) directly shows that
the amplitude at the endpoint of the locus curve is decreasing with
increasing gain F. The endpoint of the locus curve is always at the
same value of a, if b is constant. To obtain a constant a= Bo\/Go~,

lfw has to decrease when Go? decreases and the gain increases, which
means that the locus curve moves towards the center frequency. It
should be noticed that the hysteresis effect described here is created

bytheamplitude dependence only and has nothing to do with the
frequency dependence of either the active element or the circuit.

Turning back totheoscillator in Fig, 2 we look at the curve for

Pin = 0.1. PO. At the frequencies where we have three different states,

really loaded for the free-running oscillator and when a signal is
injected the element is overdriven and the output power decreases
(for some frequencies).

The normal Q value (in contrast with (& defined in (27) in [1])

used for both the amplifier and the oscillator is 10. This value was

chosen just for computational reasons. For such low Q values the

parameters of the active device cannot be assumed to be constant

with frequency, but the results can be converted to an arbitrary

Q’ by using the following transformation

Q’= c-Q

f’/f0 = (flfo – 1)/c +1.

The model calculations made here are only directly applicable when

the frequency dependence of the parameters of the active device can

be neglected. They should therefore be used for narrow-band ampli-
fiers and high-Q oscillators. The theory can, however, be used for an

arbitrary frequency dependence of the parameters. In Figs. 3 and 4,
for example, the frequency is a parameter.

VI. CONCLUSIONS

General stability criteria have been applied to a negative-con-

ductance amplifier. The results show that the type of instabilities

ovserved for an lMPATT-diode amplifier can be explained by the fact
that the diode susceptance has an amplitude dependence. To i~void
the hysteresis effects amplitude dependence of the susceptance must

be small (if possible BJGz < @) or the gain of the amplifier should
not be too high. With a broad-band circuit where the parameters of

the active element cannot be assumed constant and independent of
frequency, the stability diagram (Fig. 3) should be useful to exa mine
instabilities in amplifiers and oscillators. As pointed out before, the

hysteresis and jumps discussed in the present paper are only ampli-

tude effects.
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