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Hysteresis Effects in Microwave Amplifiers and Phase-
Locked Oscillators Caused by Amplitude-
Dependent Susceptance

BERTIL HANSSON

Abstract—A possible explanation for a type of experimentally
observed amplitude instability for amplifiers and locked oscillators
is given. The results obtained are in good agreement qualitatively
with measurements on IMPATT-diode amplifiers. The theory shows
that the susceptance of the active element has to be amplitude de-
pendent to create the actual type of instability.

1. INTRODUCTION

Stability criteria for a phase-locked negative-conductance oscil-
lator are derived in [1]. The criteria are derived in terms of the
total admittance, which is the sum of the admittance of the negative-
conductance element and the circuit admittance as seen from this
element, The circuit admittance is independent of amplitude. For
the amplitude dependence of the admittance of the active element a
series expansion was used. This type of expansion had been used
earlier by Hines [2]. The stability of phase-locked oscillators also
has been examined using describing-function techniques with almost
identical results [3], [4].

The stability criteria are also valid for a negative-conductance
amplifier and they will be used here to describe a type of instability
often found experimentally. Fig. 1 shows some curves of output
power versus frequency for an IMPATT-diode amplifier. Similar curves
have also been observed by others [5], [6]. The main feature of the
curves is that the frequency at which maximum gain occurs moves
towards lower frequencies when the input power increases. This
effect indicates that the susceptance of the active element increases
with increasing RF-amplitude. In some cases, jump and hysteresis
effects occur in the Poy: versus frequency curves. This instability is
explained theoretically in the following sections. The hysteresis
shows that for some input powers and frequencies we have two stable
states with different output powers from the amplifier and different
RF voltages across the active element.

II. StaBiLiTy EQUATIONS

We consider a circulator-coupled negative-conductance device
with a general coupling circuit. The circuit may be viewed as an
active element paralleled with a passive circuit admittance, into
which a current related to the input power is injected (see Fig. 1 in
[1]). The derivation of the stability criteria and an explanation of the
boundary and locus curves for such a circuit are also given in [1]. The
locus curve is a closed curve in a diagram of voltage versus frequency
within which all points are unstable. In the same diagram all points
below the boundary curve are unstable. This is shown in Fig. 2 where
shaded areas correspond to unstable points.

For an amplifier the equation for the boundary curve has no real
solutions so the only curve we have to consider is the locus curve.
Equation (20) in 1] is the equation for the locus curve

G-(G+ dG/aV-V) + B-(B 4 dB/dV-V) =0 - (1)

where G is the total conductance and B the total susceptance of the
circuit. G and B are, in general, functions of both RF voltage ampli-
tude V and frequency.

For the amplitude dependence, which is only in the active ele-
ment, a series expansion is used. The current in the element can be
written in a series form

i=aVat eVl +asVé + - .

We assume that the voltage Va is a purely sinusoidal voltage at fre-
quency w.

Manuscript received January 29, 1973; revised June 11, 1973. R
The author is with the Research Laboratory of Electronics, Chalmers University
of Technology, Gothenburg, Sweden.

I
Fout
mwW
10
S
/J |
i
J H
i
0 ¥ ¥
9.625 9.650 ) 9.675 GHz
Fig. 1. Experimental output power curves for an IMPATT-diode reflection

amplifier with small signal gain 21 dB.
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Fig, 2. Voltage amplitude versus frequency with the injected power as'a parameter.

Po is maximum generated power and Vo the corresponding voltage. A simple
parallel resonant circuit with Q =10 is used. Go/G, =2.0 and B/G2=0.5.

Va - V cos wi.
The fundamental component of the current Iisgiven by 2]
I=aV+ jeV®+ fasl®+ -

For the admittance of the active element we get the following series
expansion where only the first two terms are taken into account:

Vi= Go+ G2-V? + j(Bo + B V?). 2

The passive coupling circuit as seen from the active element is de-
scribed by Ye=Ge+j+ Be. With Go: =Go+G,and Bey=Bo-+B. the total
admittance is

Y =G +j-B = Go+ Go:V? + j(Bot + B2 V? ®
where the coefficients now are only frequency dependent. Introduc-
ing this in the equation for the locus curve we obtain
(Goz + G2 VH(Gos + 3:G3- V) -4 (Bos -+ Be: V?)

«(Bos + 3:B2: V) =0 (42)

or
(Go2 + Bo?) + 4+ (Gog* Gy + Bog» B)V? + 3-(Gs* + BoH) - V4 = 0. (4b)
We now introduce Bo:/Go:=a and Bs/Gz:=b and get

(A + 09 + 4 (1 + 6-6)-GorGo- V2 + 3-(1 + 59-Go?- V4 = 0. (40)
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Fig. 3. Stability diagram., The shaded areas are instability regions for Gs- Go; >0
and Gz-Gos <0, The border line between shaded and unshaded regions corre-
sponds to the endpoints of the locus curve. Asymptotes are ¢, b=+ 3.
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The conditions for real solutions to (4) are

A4+a5)GuG: <0 (5a)

and
ath? — 32+ +8ab+1>0. (5b)

The coefficients @, b, Gat, and G: are frequency dependent, and we have
real solutions to (4) and a locus curve only in a certain frequency
range. For example, this frequency range for the oscillator in Fig. 2
is f/fo=0.952-1.028. From (5) we can see that only parameters that
influence the existence of a locus curve are g, b, and the sign of Go;Ga.
Fig. 3 is a diagram with ¢ and b on the axis. If ¢ and b are within the
shaded areas and the sign of Gz-Go: is that indicated we have a locus
curve and a possibility for the type of instability which is connected
with the locus curve. For G- G2 <0 we have one shaded area and
for Go:-G2>0 two different areas.

II1. FREQUENCY RANGE oF THE Locus CUrVE

For an amplifier G¢;>0 is a necessary condition for small signal
stability. G. is positive because the negative conductance is decreas-
ing with voltage amplitude. Thus for an amplifier the sign of Go;- Gz is
positive. For an IMPATT diode relatively close to the avalanche fre-
quency B:>0. A simple single tuned citcuit has dB/dw=2-C>0.
With a high Q circuit the parameters of the active element can be
assumed to be constant with frequency and the only frequency
dependence to take into account is that of B.. The point correspond-
ing to the center frequency of the amplifier in Fig. 3 is on the axis
a=0(Bo:=0). When we increase the frequency we move to the right
in the diagram along a horizontal line b = B;/G2=constant. Because
b is positive with the assumptions given above we move into the
shaded area if we decrease the frequency, but only if b >+/3.

We can also use the same stability diagram for a phase-locked
oscillator. For the oscillator the coefficient Go: is negative. The free-
running oscillation point is on the symmetry axis ¢ =b in Fig. 3. The
area, close to this axis is shaded for Go;* G2 <0 so we have a locus curve
extending around the free-running frequency. If we assume small
frequency dependence for the parameters of the active element,
the only difference is that we move to the left in the diagram with
increasing frequency because Gy, is negative. If B2>0 the locus
curve extends more towards lower frequencies. If B3/G.>+/3 the
locus curve will have infinite extension at the low frequency side.

IV. AmpLITUDE RANGE oF Locus CURVE

This far we have only considered at which frequencies we have a
locus curve, We now want to know something about the amplitude
range and therefore determine the amplitudes at the endpoints of
the locus curve (as a function of frequency). They are obtained by
taking the derivative of (4) with respect to voltage and setting the
derivative equal to zero.

4+(Go:*G2 + Boi*B2) + 6- (B2 4 GA)V2 = 0 (6)
which gives

2 Go:*Gz + By~ Bo _ 2Gul+ad
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Fig. 4. The factor (14ab)/(1-+5?) at the border line (in Fig. 3) as a function of b.

This value can also be obtained as a double root to (4)., Maximum
generated power in the active element occurs when [2]

V2 = Vopt,z = - Go/(Z'Gz).
For an amplifier the small signal gain is
F=(G.— Go)/(Gs + Go) = (Gor — 2G¢)/Goe

where G, is the small signal conductance of the active element and
G. is the coupling-circuit conductance.
For the amplifier we get

8/3 1+ab

2 2 o
VE Vont F—1 148

®

where (1+4ab)/(1+b2) is always negative. The variation of this factor
at the endpoint of the locus curve is shown in Fig. 4. We can see that
the locus curve moves towards smaller amplitudes with increasing
value of b =B:/G: and also with increasing gain F.

Turning to the oscillator again we find that the amplitude of the
free-running oscillator is V2= —Go:/G2(Go: is negative). The ampli-
tude at the endpoints of the locus curve is

21+ab
2Pl = o
VIVE=3 T
where (1 +ab)/(14b?) is positive for the oscillator. The amplitude at
the endpoints of the locus curve is changing in much the same way
as the amplitude of the free-running oscillator. The variation of
the factor (1+ab)/(1+b?) is shown in Fig. 4. Notice that this factor
is independents of the sign of b.

V. THE INsTABILITY CONNECTED WITH THE Locus CUrvE

Conditions for the existence of a locus curve have only been
discussed so far. The type of instability connected with the locus curve
should now be examined. Therefore, we look at the output power
curves for an amplifier. The equations for calculating input power,
diode voltage, output power, and phase have been given earlier. (See
for example [1], [2].) Output power versus frequency with input
power as a parameter is shown in Fig. 5. The curves have been com-
puted for three different values of small signal gain. The shaded
areas are the areas within the locus curves which correspond to un-
stable points. The output power curves are shown with hysteresis
at the locus curve. If we have an amplifier as in Fig. 5(b) and de-
crease the frequency with Piy=0.1-P,, the output power will sud-
denly drop when we come to the locus curve. If we then increase the
frequency we will stay at the low power part until we come to the locus
curve again. As is pointed out in [4], the derivative dPou/dw (and
also dV/dw) approaches infinity at the locus curve. The solution to
the circuit equations for Pi, =0.1-P, is a S-type curve in frequency.
The part of the curve within the locus curve is not shown here, but
we can see what it looks like for the oscillator in Fig. 2 where the
whole curve is drawn. For the amplifier we then have either one
stable point or, when the output power curve crosses the locus curve,
two stable points and one unstable.
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Fig. 5. OQutput power versus frequency with the input power as a parameter for an
amplifier. Py is maximum generated power. B:/G: =5, Q =10, (a) Small signal
gain 10 dB, Go/G, = —0.519, (b) Small signal gain 20 dB, Go/G, = —0.818. (c)
Small slgnal gain 30 dB, Go/G, = —0.939.

Fig. 5 shows that the locus curve and the connected hysteresis
and jump effects move towards the center frequency and towards
smaller amplitudes for increasing gain. This can also be concluded
from the preceding calculations. Equation (8) directly shows that
the amplitude at the endpoint of the locus curve is decreasing with
increasing gain F. The endpoint of the locus curve is always at the
same value of ¢, if b is constant. To obtain a constant a =Bg;/Go,
By; has to decrease when Gy decreases and the gain increases, which
means that the locus curve moves towards the center frequency. It
should be noticed that the hysteresis effect described here is created
by the amplitude dependence only and has nothing to do with the
frequency dependence of either the active element or the circuit.

Turning back to the oscillator in Fig. 2 we look at the curve for
Pin=0.1-P,. At the frequencies where we have three different states,
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Fig. 6. Output power versus frequency for an oscillator,
Go/G, = —2.0 and B2/Gz2 =0.5.

only one of these states is stable. One is unstable because it is within
the locus curve and one is unstable because it is below the boundary
curve. Between f/f3=0.952 and f/fo=0.973 we can have two stable
states if one of the points is between the locus and boundary curves in
the voltage diagram. This occurs for Pi, somewhat larger than 0.1+ P,
Output power curves for the same oscillator are shown in Fig. 6.
Here only the stable parts of the curves are drawn. These parts which
in the voltage diagram are all above the locus curve are now partly
within the locus curve. This is because the active element is opti-
mally loaded for the free-running oscillator and when a signal is
injected the element is overdriven and the output power decreases
(for some frequencies).

The normal Q value (in contrast with Qex¢ defined in (27) in [1])
used for both the amplifier and the oscillator is 10. This value was
chosen just for computational reasons. For such low Q values the
parameters of the active device cannot be assumed to be constant
with frequency, but the results can be converted to an arbitrary
Q’ by using the following transformation

Q=0
Slfo = (f/fo = Dfo+ 1.

The model calculations made here are only directly applicable when
the frequency dependence of the parameters of the active device can
be neglected. They should therefore be used for narrow-band ampli-
fiers and high-Q oscillators. The theory can, however, be used for an
arbitrary frequency dependence of the parameters. In Figs. 3 and 4,
for example, the frequency is a parameter.

VI. CoNcLUSIONS

General stability criteria have been applied to a negative-con-
ductance amplifier. The results show that the type of instabilities
ovserved for an iMPATT-diode amplifier can be explained by the fact
that the diode susceptance has an amplitude dependence. To avoid
the hysteresis effects amplitude dependence of the susceptance must
be small (if possible B:/G2<+/3) or the gain of the amplifier should
not be too high. With a broad-band circuit where the parameters of
the active element cannot be assumed constant and independent of
frequency, the stability diagram (Fig. 3) should be useful to examine
instabilities in amplifiers and oscillators. As pointed out before, the
hysteresis and jumps discussed in the present paper are only ampli-
tude effects.
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